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The cosmic web

The spatial arrangement of the large-scale matter distribution, commonly called the Cosmic Web, falls into 4 main types of 
structures: Nodes, Filaments, Sheets or walls, Voids

Gravity

Initial density fluctuations, Gaussian 

field, ! = 380 000 years
[Planck collaboration, 2015]

Observed local galaxy 

distribution from 2MASS 
[Skrutskie+06]

Observation

Dark matter density field in 

the Illustris simulation 
[Vogelsberger+14]

Simulation
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Constraining cosmology: Context

• Statistical estimators of the spatial distribution of matter are needed = summary statistics

• The natural way of describing centred fields < "! >= 0 is to use < """" > which defines the matter power spectrum 
in Fourier space, &""

Summarised as

Dark matter density field from the Quijote 

simulation [Villaescusa-Navarro+18] Matter power spectrum

!!! " #" $ + $# = 1
2) $ < +#! $ +#!($′) >
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Constraining cosmology: Context

Ω": matter density

Ω#: baryon density

ℎ: Hubble parameter at ) = 0

*$: spectral index

+%: summed neutrino mass

,&: amplitude of the linear power spectrum at a scale of 8 Mpc/ℎ

Plot from Matsubara+06

Matter power spectrum: sensitive to cosmology 

à Constrains the model and its parameters
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How to f ight the degeneracies?

Include higher-order information directly or indirectly:

• Direct higher-orders [Yankelevich+19, Hahn+21, Agarwal+21, Gualdi+21]

• Velocity information [Mueller+15, Kuruvilla+21]

• Marked power spectrum [Beisbart+00, Stheth+06, White+16, Massara+20]

• Neural networks [Ribli+19]

• Wavelet scattering transform [Mallat+12, Allys+19/20, Cheng & Menard+20, Valogiannis+22/23]

• Environments information [Kreisch+19, Bayer+21, Bonnaire+22/23]

• Density splits [Uhleman+19, Paillas+20]

• MST information [Naidoo+19, Naidoo+21]
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Cosmology with voids and nodes

• Massive nodes are used through their distribution of counts, shapes, etc. to break degeneracies [Bachal+97, Holder+01]

• Voids are pristine environments perfect for the study of dark energy and to constrain neutrino mass [e.g. Pisani+15, Massara+15] 

Combination of halo mass 
function and void size function 
break degeneracies
(from Bayer+21)

Void abundance sensitive to neutrino mass 
(from Kreisch+19)
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Question addressed

What is the theoretical cosmological information contained in the cosmic web environments?
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Question addressed

What is the theoretical cosmological information contained in the cosmic web environments?

Probing large, linear 

and small, non-

linear scales using 

simulations

Constraints on 6 cosmological 

parameters 

(Ω!, Ω", ℎ, *#, +$, ,%)

Statistical estimator in 

environments
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Quijote simulations

• Quijote [Villaescusa-Navarro+20] = large suite of 44,100 simulations spanning thousands of cosmological models 

• Fiducial cosmology consistent with the Planck15 cosmology

0#'( = 1 Gpc/ℎ

1)*+, = 512- DM (and neutrinos if any)
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Methodology of the physical  classif ication

&-spline 
interpolation of 

order 4

Continuous 
overdensity field 'Discrete input (

Solve Poisson 
equation over the 
)! = 360" cells

ΔΦ# = '

Reduced gravitational potential Φ#

Cosmic web  classification 
at the cell level

Particles classification
{1, ℰ 4 }

Overdensity fields in 
environments

&-spline 
interpolation of 
order 4 for each 

environment

1 2

4
Propagate the 

classification at 
the particle 

level

5

Physical classification from tidal tensor
T-Web formalism 

[Hahn+08, Forero-Romero+08]

3

Environment
ℰ 4

Condition

Void !!, !", !# < !$%
Wall !!, !" < !$%, !# > !$%

Filament !! < !$%, !#, !" > !$%
Node !!, !", !# > !$%
*Threshold $!" and smoothing scale %# are 

embedded as nuisance parameters.

Void

Wall

Filament

Node

All
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Matter distribution in environments

Unused bins in the analysis 
" > "!%& = 0.5 ℎ/Mpc

7,000 realisations of fiducial 
cosmology from Quijote
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Fisher forecast

The Fisher formalism allows to derive the (best possible) marginalised errors on the parameters based on two ingredients

5 6 .,0 =
78
791

2

:34
78
791

156+78 = 500
1975 = 7000

Derivatives
Covariance Σ

à Can be derived numerically with the 
Quijote simulations
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Fisher forecast in real-space

Ω! Ω" ℎ *# +$ ,6

Matter 0.0969 0.0413 0.5145 0.5019 0.0132 0.8749
Void 2.5 1.8 1.7 1.7 0.3 1.0

Wall 1.3 1.0 1.0 1.3 0.1 0.8

Filament 3.0 2.2 2.1 2.0 0.6 1.1

Node 1.0 0.9 0.8 0.8 0.1 0.5

Combination 7.7 4.5 6.5 15.7 2.9 15.2
Table of improvement factors

• Individual environments are performing better in some cases 
than the matter power spectrum

• In real space, the combination of auto-spectra in environments 
yields 2.9 to 15.7 improvement factors over the matter power 
spectrum

• Some environments are providing complementary information
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A word on the classif ication parameters

Ω! Ω" ℎ *# +$ ,6

Matter 0.0969 0.0413 0.5145 0.5019 0.0132 0.8749
Free

Marginalised* over 
7&' and 8(

7.7 4.5 6.5 15.7 2.9 15.2

Fixed
7&' = 0.3 and 
8( = 2 Mpc/ℎ

7.9 4.5 6.6 16.4 7.2 24.3

• Parameters of the classification (smoothing scale and eigenvalue threshold) = nuisance parameters 

• They are well-constrained by the procedure and have a limited impact on the obtained constraints

• Opens the possibility to apply different definitions and still obtain the same results!

Similar results Most of the impact is 
on ,& and +%*Derivatives taken with

!$% = {0.2, 0.3, 0.4}
%& = 1.5, 2, 2.5  Mpc/ℎ
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Constraints in redshift-space
Real space

Up to an order of magnitude 
improvement for the matter 

power spectrum

Ω! Ω" ℎ *# +$ ,6

Matter 0.0969 0.0413 0.5145 0.5019 0.0132 0.8749

Ω! Ω" ℎ *# +$ ,6

Matter, ℓ = {0,2} 0.0046 0.0133 0.1396 0.0719 0.0020 0.0834

Combined 
environments 1.7 1.4 1.8 2.4 1.0 2.7

Cross-spectra 2.3 1.6 2.2 2.9 1.1 3.4

Redshift-space

!'' " #" $ + $# = 1
2) $ < +#' $ +#'($′) >

!ℓ),'' " = 2ℓ + 1
2 5

+,

,
!),'' ", 7 ℒℓ 7 d7
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Evolution of the constraints with !!"#

• Quick saturation of the matter power spectrum information at scales > 0.2 ℎ/Mpc

• Combined environments => Improvement for all parameters seen at all considered scales

Real space
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Conclusions and perspectives

tony.bonnaire@ens.frIdeas or suggestions?

What is the theoretical cosmological information contained in the cosmic web environments?

Take-home messages:
• Splitting the particle set through the environments can bring sizable gains on constraints for all parameters at all scales

• Gains observed both in real and redshift spaces

• Not too dependent on the definition of the environments

All this was fun but... The interesting questions start now:
• What about matter tracers? (biases in the environments, mass threshold, shot noise, etc.)

• How to do cosmology with that? (build likelihood, accurate covariances, SBI, etc.)

• Basically, how to move from this idealised setup to a more realistic one?

Some perspectives



Physics for Machine Learning
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Non-convex optimization

     Statistical physics of spin-glasses:

• Replica method, dynamical mean field theory

• Phase transitions and finite size scaling analyses

• Kac-Rice analyses of the topology of the landscape

à Requires the adaption and extension of these tools to 

data science (different energy functions, disorder is not 

Gaussian)

   Reasons of the success of gradient descent in high-

dimensional and non-convex landscapes

Trivialization of the 
landscape?

In which regime do we 
find an interesting 

minimum?



23

Fisher forecastSimulations & Detection Conclusion Other activitiesContext

The phase retrieval case

   Phase retrieval: a prototypical example of single-layer neural network

9 ∈ ℝ<

< ∈ ℝ= => = <>9 ?

Setup:
• * Gaussian samples = = >1 1:4

;

• Weights initialised randomly
• Gradient descent with fixed (vanishing) learning rate
• Thermodynamic limit: ? → +∞, * → +∞, C = */?	~	G(1)
• Teacher-student: true labels comes from the same architecture with J⋆
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The phase retrieval case

When K= < K < K>, the initial curvature is informative but gradient descent dynamics is stuck in bad minima.
When K > K>, the « bad minima » hindering the recovery of the signal J⋆ turn into saddle-points with exactly one 
direction pointing towards the correct solution.

J ⊥ J⋆ J = ±J⋆
J ⊥ J⋆

J = ±J⋆

C > C?

J ⊥ J⋆

   Phase retrieval: a prototypical example of single-layer neural network

9 ∈ ℝ<

< ∈ ℝ= => = <>9 ?

Setup:
• * Gaussian samples = = >1 1:4

;

• Weights initialised randomly
• Gradient descent with fixed (vanishing) learning rate
• Thermodynamic limit: ? → +∞, * → +∞, C = */?	~	G(1)
• Teacher-student: true labels comes from the same architecture with J⋆

C. CammarotaG. Biroli

[Bonnaire et al., 2024, soon on the arXiv!]
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[Bonnaire et al., 2024, soon on the arXiv!]

tony.bonnaire@ens.frIdeas or suggestions?


