The cosmological information of the cosmic web

Tony Bonnaire

École Normale Supérieure, Physics Department & Center for data sciences, Paris

Scattering club, February 27th, 2024

erc

LPENS

The spatial arrangement of the large-scale matter distribution, commonly called the Cosmic Web, falls into 4 main types of structures: Nodes, Filaments, Sheets or walls, Voids

Simulation

Dark matter density field in the Illustris simulation [Vogelsberger+14]

- Statistical estimators of the spatial distribution of matter are needed = summary statistics
- The natural way of describing centred fields $< \delta_m > = 0$ is to use $< \delta_m \delta_m >$ which defines the matter power spectrum in Fourier space, P^{mm}

Constraining cosmology: Context

Plot from Matsubara+06

How to fig	ght the deger	neracies?		4
Context	Simulations & Detection		Conclusion	Other activities

Include higher-order information directly or indirectly:

- Direct higher-orders [Yankelevich+19, Hahn+21, Agarwal+21, Gualdi+21]
- Velocity information [Mueller+15, Kuruvilla+21]
- Marked power spectrum [Beisbart+00, Stheth+06, White+16, Massara+20]
- Neural networks [Ribli+19]
- Wavelet scattering transform [Mallat+12, Allys+19/20, Cheng & Menard+20, Valogiannis+22/23]
- Environments information [Kreisch+19, Bayer+21, Bonnaire+22/23]
- Density splits [Uhleman+19, Paillas+20]
- MST information [Naidoo+19, Naidoo+21]

- Massive nodes are used through their distribution of counts, shapes, etc. to break degeneracies [Bachal+97, Holder+01]
- Voids are pristine environments perfect for the study of dark energy and to constrain neutrino mass [e.g. Pisani+15, Massara+15]

Void abundance sensitive to neutrino mass

Question addressed Context Simulations & Detection Fisher forecast Conclusion

What is the theoretical cosmological information contained in the cosmic web environments?

Question addressed

Othe

7

What is the theoretical cosmological information contained in the cosmic web environments?

Probing large, linear and small, nonlinear scales using simulations

Constraints on 6 cosmological parameters $(\Omega_{\rm m}, \Omega_{\rm b}, h, n_{\rm s}, \sigma_8, M_{\nu})$ Statistical estimator in environments

Quijote	simulations			8
	Simulations & Detection	Conclusi	on 🔶	

- Quijote [Villaescusa-Navarro+20] = large suite of 44,100 simulations spanning thousands of cosmological models
- Fiducial cosmology consistent with the Planck15 cosmology

Name	$\Omega_{\mathbf{m}}$	$\Omega_{\rm b}$	h	$n_{\mathbf{s}}$	σ_8	M_{ν}	ICs	# of real.
Fiducial	0.3175	0.049	0.6711	0.9624	0.834	0	2LPT	15000
Ω_m^+	0.3275	0.049	0.6711	0.9624	0.834	0	2LPT	500
Ω_m^-	0.3075	0.049	0.6711	0.9624	0.834	0	2LPT	500
Ω_b^+	0.3175	0.051	0.6711	0.9624	0.834	0	2LPT	500
Ω_b^{-}	0.3175	0.047	0.6711	0.9624	0.834	0	2LPT	500
h^{+}	0.3175	0.049	0.6911	0.9624	0.834	0	2LPT	500
h^-	0.3175	0.049	0.6511	0.9624	0.834	0	2LPT	500
n_s^+	0.3175	0.049	0.6711	0.9824	0.834	0	2LPT	500
n_s^-	0.3175	0.049	0.6711	0.9424	0.834	0	2LPT	500
σ_8^+	0.3175	0.049	0.6711	0.9624	<u>0.849</u>	0	2LPT	500
σ_8^-	0.3175	0.049	0.6711	0.9624	0.819	0	2LPT	500
M^0_{ν}	0.3175	0.049	0.6711	0.9624	0.834	0	ZA	500
M^+_{ν}	0.3175	0.049	0.6711	0.9624	0.834	$\underline{0.1}$	ZA	500
M_{ν}^{++}	0.3175	0.049	0.6711	0.9624	0.834	<u>0.2</u>	ZA	500
M_{ν}^{+++}	0.3175	0.049	0.6711	0.9624	0.834	<u>0.4</u>	ZA	500

$$L_{\rm box} = 1 \, {\rm Gpc}/h$$

 $N_{\text{part}} = 512^3 \text{ DM}$ (and neutrinos if any)

Methodology of the physical classification

Matter distribution in environments

The Fisher formalism allows to derive the (best possible) marginalised errors on the parameters based on two ingredients

Fisher forecast in real-space

		Simulations & Detection			Fisher forecast	
	Ω _m	$\Omega_{\mathbf{b}}$	h	n _s	σ_8	M _v
Matter	0.0969	0.0413	0.5145	0.5019	0.0132	0.8749
Void	2.5	1.8	1.7	1.7	0.3	1.0
Wall	1.3	1.0	1.0	1.3	0.1	0.8
Filament	3.0	2.2	2.1	2.0	0.6	1.1
Node	1.0	0.9	0.8	0.8	0.1	0.5
Combination	7.7	4.5	6.5	15.7	2.9	15.2
			_			

Table of improvement factors

- Individual environments are performing better in some cases than the matter power spectrum
- In real space, the combination of auto-spectra in environments yields 2.9 to 15.7 improvement factors over the matter power spectrum
- Some environments are providing **complementary information**

Fisher forecast in real-space

		Simulatior	Simulations & Detection		Fisher forecast		
	$\Omega_{ m m}$	$\Omega_{ m b}$	h	n _s	σ_8	M _v	
Matter	0.0969	0.0413	0.5145	0.5019	0.0132	0.8749	
Void	2.5	1.8	1.7	1.7	0.3	1.0	
Wall	1.3	1.0	1.0	1.3	0.1	0.8	
Filament	3.0	2.2	2.1	2.0	0.6	1.1	
Node	1.0	0.9	0.8	0.8	0.1	0.5	
Combination	7.7	4.5	6.5	15.7	2.9	15.2	
			_				

Table of improvement factors

- Individual environments are performing better in some cases than the matter power spectrum
- In real space, the combination of auto-spectra in environments yields 2.9 to 15.7 improvement factors over the matter power spectrum
- Some environments are providing **complementary information**

Fisher forecast in real-space

		Simulatior			Fisher forecast		
	$\Omega_{ m m}$	$\Omega_{ m b}$	h	ns	σ_8	$M_{ m v}$	
Matter	0.0969	0.0413	0.5145	0.5019	0.0132	0.8749	
Void	2.5	1.8	1.7	1.7	0.3	1.0	
Wall	1.3	1.0	1.0	1.3	0.1	0.8	
Filament	3.0	2.2	2.1	2.0	0.6	1.1	
Node	1.0	0.9	0.8	0.8	0.1	0.5	
Combination	7.7	4.5	6.5	15.7	2.9	15.2	

14

Table of improvement factors

- Individual environments are performing better in some cases than the matter power spectrum
- In real space, the combination of auto-spectra in environments yields 2.9 to 15.7 improvement factors over the matter power spectrum
- Some environments are providing **complementary information**

Fisher forecast in real-space 15 **Fisher forecast** $\Omega_{\rm m}$ $\Omega_{\rm b}$ h $M_{\rm v}$ $n_{\rm S}$ σ_8 0.0413 0.5145 0.5019 0.0132 0.8749 0.0969 Matter Void 2.5 1.8 1.7 1.7 0.3 1.0 M_{ν} Wall 1.3 1.0 1.0 1.3 0.1 0.8 0 **Filament** 3.0 2.2 2.1 2.0 0.6 1.1 1.0 0.9 0.8 Node 0.8 0.1 0.5 -1Combination 7.7 4.5 6.5 15.7 2.9 15.2 Table of improvement factors 0.2 0.3 0.40.5 $\Omega_{ m m}$ 4 • Individual environments are performing better in some cases P^{mm} than the matter power spectrum 2 $P^{\rm VV}$ P^{WW} • In real space, the combination of auto-spectra in environments M_{ν} 0 yields **2.9 to 15.7 improvement factors** over the matter power P^{FF} spectrum $P^{\rm NN}$ -2 P^{comb} • Some environments are providing **complementary information** -40.80 0.85

 σ_8

- Parameters of the classification (smoothing scale and eigenvalue threshold) = nuisance parameters
- They are well-constrained by the procedure and have a limited impact on the obtained constraints
- Opens the possibility to apply different definitions and still obtain the same results!

	Ω _m	$\Omega_{ m b}$	h	n _s	σ_8	$M_{ m v}$
Matte	r 0.0969	0.0413	0.5145	0.5019	0.0132	0.8749
Free Marginalised $\lambda_{ m th}$ and c	* over 7.7	4.5	6.5	15.7	2.9	15.2
Fixed $\lambda_{\rm th} = 0.3$ a $\sigma_N = 2$ Mp	and 7.9	4.5	6.6	16.4	7.2	24.3
*Derivatives taken with		Simil	ar results		Most of th on σ_8	ne impact is and $M_{ m v}$

 $\lambda_{\text{th}} = \{0.2, 0.3, 0.4\}$ $\sigma_N = \{1.5, 2, 2.5\} \text{ Mpc}/h$

Constraints in redshift-space

	Context	🕨 Sim	ulations & Detection		Fisher forecast		Conclusion		Other activities
400		Rea	l space				$P^{\alpha\alpha}(k)\delta_{\rm D}(k+$	$\boldsymbol{k}')=\frac{1}{(2\pi)^3}$	$< ilde{\delta}^{lpha}(m{k}) ilde{\delta}^{lpha}(m{k}')>$
350		Č.		Ω_{m}	$\Omega_{\mathbf{b}}$	h	n _s	σ_8	$M_{ m v}$
		1	Matter	0.096	9 0.0413	0.5145	0.5019	0.0132	0.8749
₩ 200 - <u>-</u> N 150- 100- 50- 0 0	100 200 300 400 x[h ⁻¹ Mpc]	400 Red	oo Redshift-space		Jp to an order of mprovement for power spee	$P_{\ell}^{s,\alpha\alpha}(k) = \frac{2\ell+1}{2} \int_{-1}^{1} P^{s,\alpha\alpha}(k,\mu) \mathcal{L}_{\ell}(\mu) d\mu$			
400				Ω_{m}	$\Omega_{ m b}$	h	n _s	σ_8	$M_{ m v}$
300 · 250 ·		×	Matter, $\ell = \{0,2\}$	0.0046	6 0.0133	0.1396	0.0719	0.0020	0.0834
₩ ₁ 200 150 100 50 0			Combined environments	1.7	1.4	1.8	2.4	1.0	2.7
	100 200 300 4 X[h ⁻¹ Mpc]	400	Cross-spectra	2.3	1.6	2.2	2.9	1.1	3.4

Evolution of the constraints with k_{\max}

- Quick saturation of the matter power spectrum information at scales > 0.2 h/Mpc
- Combined environments => Improvement for all parameters seen at all considered scales

What is the theoretical cosmological information contained in the cosmic web environments?

Take-home messages:

- Splitting the particle set through the environments can bring sizable gains on constraints for all parameters at all scales
- Gains observed both in real and redshift spaces
- Not too dependent on the definition of the environments

All this was fun but... The interesting questions start now:

- What about matter tracers? (biases in the environments, mass threshold, shot noise, etc.)
- How to do cosmology with that? (build likelihood, accurate covariances, SBI, etc.)
- Basically, how to move from this idealised setup to a more realistic one?

Physics for Machine Learning

Non-convex optimization

Context

mulations & Detection

isher forecast

22

Reasons of the success of gradient descent in high-

dimensional and non-convex landscapes

Statistical physics of spin-glasses:

- Replica method, dynamical mean field theory
- **Phase transitions** and finite size scaling analyses
- Kac-Rice analyses of the topology of the landscape
- → Requires the adaption and extension of these tools to data science (different energy functions, disorder is not Gaussian)

The phase retrieval case23ContextSimulations & DetectionFisher forecastConclusionOther activities

Phase retrieval: a prototypical example of single-layer neural network

Setup:

- *n* Gaussian samples $X = \{x_i\}_{i=1}^n$
- Weights initialised randomly
- **Gradient descent** with fixed (vanishing) learning rate
- Thermodynamic limit: $d \to +\infty$, $n \to +\infty$, $\alpha = n/d \sim O(1)$
- Teacher-student: true labels comes from the same architecture with w_{\star}

