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Generative models:  a brief overview

• Goal: model the probability distribution of the data 𝑃0 𝒂 , 𝒂 ∈ ℝ𝑑

• Sampling task: usually relies on learning a mapping from a simple distribution to 𝑃0(𝒂) based on finite training set 
of size 𝑛

• Several successful paths include:

▪ Variational Autoencoders (VAEs) [Kingma+2013]

▪ Generative Adversarial Networks (GANs) [Goodfellow+2014]

▪ Normalizing flows [Tabak+2010, Rezende+2015]

▪ Diffusion Models (DMs) [Sohl-Dickstein+2015, Ho+2020]
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Some examples: DALL-E

“Realistic silhouette of a horse running 
at sunset time with a vibrant sky”

Obtained with DALL-E 3
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Some examples: DALL-E

“A penguin writing down Einstein’s 
equations”

“Realistic silhouette of a horse running 
at sunset time with a vibrant sky”

Obtained with DALL-E 3
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Some examples: DALL-E

“Physics and Machine Learning”“A penguin writing down Einstein’s 
equations”

“Realistic silhouette of a horse running 
at sunset time with a vibrant sky”

Obtained with DALL-E 3
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What about science?

In science: Realistic data generation (fields, molecules, etc.) , Super-resolution, Test hypothesis

Small-to-high resolution mapping using 
generative AI [Li+2021]

Small resolution High resolution

Cosmological matter fields obtained from 
simulations [Nelson+2018]
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Diffusion Models:  Forward process

      forward process backward process

• The idea is to progressively degrade an initial datapoint 𝒂𝜇 using an Ornstein-Uhlenbeck stochastic process

 d𝒙 = −𝒙 𝑡 d𝑡 + 𝝃 𝑡 d𝑡

with 𝜉𝑖 𝑡 ∼ 𝒩 0,1 , 𝒙 0 = 𝒂𝜇

• Using Ito’s formula, one can express

𝒙 𝑡 = 𝑒−𝑡𝒂𝜇 + 1 − 𝑒−2𝑡𝝃 𝑡 , 𝒙 0 = 𝒂𝜇, 𝜇 ∈ {1, … , 𝑛}

Δ𝑡
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Diffusion Models:  Forward process

      forward process backward process

• The idea is to progressively degrade an initial datapoint 𝒂𝜇 using an Ornstein-Uhlenbeck stochastic process

 d𝒙 = −𝒙 𝑡 d𝑡 + 𝝃 𝑡 d𝑡

with 𝜉𝑖 𝑡 ∼ 𝒩 0,1 , 𝒙 0 = 𝒂𝜇

• Using Ito’s formula, one can express

𝒙 𝑡 = 𝑒−𝑡𝒂𝜇 + 1 − 𝑒−2𝑡𝝃 𝑡 , 𝒙 0 = 𝒂𝜇, 𝜇 ∈ {1, … , 𝑛}

Forward time

𝒂𝜇 𝒩(𝟎, 𝟏)

Δ𝑡



8
Theoretical results Numerical experiments ConclusionContext

Diffusion Models:  Backward process

      forward process backward process

• In the backward process, one wants to reverse the process from 𝒩 0,1  to 𝑃0(𝒂)

• To do so [Andersen1983], the force needed to go back is called the score function 𝐹 𝒚, 𝑡 = ∇ log 𝑃𝑡 𝒚

 d𝒚 = − 𝒚 + 2∇ log 𝑃𝑡 𝒚 dt + 𝝃 𝑡 d𝑡,

where again 𝜉𝑖 𝑡 ∼ 𝒩 0,1 , 𝑡 runs backward in time, and 𝒚(0) = 𝒩 𝟎, 𝟏
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Diffusion Models:  Backward process

      forward process backward process

• In the backward process, one wants to reverse the process from 𝒩 0,1  to 𝑃0(𝒂)

• To do so [Andersen1983], the force needed to go back is called the score function 𝐹 𝒚, 𝑡 = ∇ log 𝑃𝑡 𝒚

 d𝒚 = − 𝒚 + 2∇ log 𝑃𝑡 𝒚 dt + 𝝃 𝑡 d𝑡,

where again 𝜉𝑖 𝑡 ∼ 𝒩 0,1 , 𝑡 runs backward in time, and 𝒚(0) = 𝒩 𝟎, 𝟏

Backward time

𝒚(∞) ∼ 𝑃0 𝒩(𝟎, 𝟏)
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Diffusion Models:  Backward process

      forward process backward process

• In the backward process, one wants to reverse the process from 𝒩 0,1  to 𝑃0(𝒂)

• To do so [Andersen1983], the force needed to go back is called the score function 𝐹 𝒚, 𝑡 = ∇ log 𝑃𝑡 𝒚

 d𝒚 = − 𝒚 + 2∇ log 𝑃𝑡 𝒚 dt + 𝝃 𝑡 d𝑡,

where again 𝜉𝑖 𝑡 ∼ 𝒩 0,1 , 𝑡 runs backward in time, and 𝒚(0) = 𝒩 𝟎, 𝟏

• Practical problem: the score function needs to be known (and it is hard) → Use of deep networks to learn it

Backward time

𝒚(∞) ∼ 𝑃0 𝒩(𝟎, 𝟏)
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Overview of the results

• High-dimensional: 𝑑 → +∞
• Large number of data: 𝑛 → +∞
• Exact empirical score function hypothesis 

S E T T I N G S
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Overview of the results

• High-dimensional: 𝑑 → +∞
• Large number of data: 𝑛 → +∞
• Exact empirical score function hypothesis 

• Three dynamical regimes in the backward dynamics:
 I. Random motion
 II. Features formation
 III. Memorization

• Characterize the timescale at which the transitions 
between regimes I-II and II-III occur, respectively 
denoted 𝑡𝑆 and 𝑡𝐶

R E S U LT S

S E T T I N G S
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High-dimensional Gaussian mixtures

• Assume 𝒂 is drawn from a (high 𝑑) Gaussian mixture model such that

𝒂𝜇~ 𝑃0 =
1
2

𝒩 𝒎, 𝟏 +
1
2

𝒩 −𝒎, 𝟏

• At any time 𝑡 in the backward (and forward) process,

𝑃𝑡 𝒙 = න d𝒂 𝑃0 𝒂 𝛾𝑡 𝒙, 𝒂 ,

with

𝒎 2
2 = 𝑚2𝑑 where 𝑚 is 𝑂(1)

𝛾𝑡 𝒙, 𝒂 =
1

2𝜋Δ𝑡
𝑑 𝑒−

𝒙(𝑡)−𝒂𝑒−𝑡 2

2Δ𝑡

Δ𝑡 = 1 − 𝑒−2𝑡
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All that matters in this case is the overlap between 𝒙 and ±𝒎, 𝑞 𝑡 = 1
𝑑

𝒙 𝑡 ⋅ 𝒎, evolving through

with 

High-dimensional Gaussian mixtures

• Assume 𝒂 is drawn from a (high 𝑑) Gaussian mixture model such that

𝒂𝜇~ 𝑃0 =
1
2

𝒩 𝒎, 𝟏 +
1
2

𝒩 −𝒎, 𝟏

• At any time 𝑡 in the backward (and forward) process,

𝑃𝑡 𝒙 = න d𝒂 𝑃0 𝒂 𝛾𝑡 𝒙, 𝒂 ,

with 𝛾𝑡 𝒙, 𝒂 =
1

2𝜋Δ𝑡
𝑑 𝑒−

𝒙(𝑡)−𝒂𝑒−𝑡 2

2Δ𝑡

−d𝑞 = −
𝜕𝑉 𝑞, 𝑡

𝜕𝑞
d𝑡 + d𝜉(𝑡)

𝑉 𝑞, 𝑡 =
1
2

𝑞2 − 2𝜇2 log cosh 𝑞𝑒−𝑡 𝑑

𝒎 2
2 = 𝑚2𝑑 where 𝑚 is 𝑂(1)

Δ𝑡 = 1 − 𝑒−2𝑡
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Speciation transition in GMM

−d𝑞 = −
𝜕𝑉 𝑞, 𝑡

𝜕𝑞
d𝑡 + d𝜉(𝑡)

𝑉 𝑞, 𝑡 =
1
2

𝑞2 − 2𝜇2 log cosh 𝑞𝑒−𝑡 𝑑

𝑡 ≫
1
2

log 𝑑

Regime I
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Speciation transition in GMM

−d𝑞 = −
𝜕𝑉 𝑞, 𝑡

𝜕𝑞
d𝑡 + d𝜉(𝑡)

𝑉 𝑞, 𝑡 =
1
2

𝑞2 − 2𝜇2 log cosh 𝑞𝑒−𝑡 𝑑

𝑡 ≫
1
2

log 𝑑 𝑡 ≪
1
2

log 𝑑

Regime I Regime II
Large backward time

Small backward time
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Speciation transition in GMM

−d𝑞 = −
𝜕𝑉 𝑞, 𝑡

𝜕𝑞
d𝑡 + d𝜉(𝑡)

𝑉 𝑞, 𝑡 =
1
2

𝑞2 − 2𝜇2 log cosh 𝑞𝑒−𝑡 𝑑

𝑡 ≫
1
2

log 𝑑 𝑡 ≪
1
2

log 𝑑

• The transition from single to double well structure of 𝑽(𝒒, 𝒕) characterises the first transition between a regime 
where the trajectory is essentially noise to a regime where the cluster has been decided

Regime I Regime II

It is a transition we dubbed speciation in reference to ecology, and occurring on a timescale

𝑡𝑆 =
1
2

log 𝑑 .

Large backward time

Small backward time
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Regime II  and generalisation

• Regime I is therefore characterised by generating pure noise from 
quadratic potential

• In Regime II (i.e. when 𝑡 < 𝑡𝑆), 𝑞 = 𝒙⋅𝒎
𝑑

 diverges to ±∞ with a sign 

that depends on the cluster

• The backward process is therefore the one of a single Gaussian 
centred on ±𝒎

−d𝒙 = −𝒙 ± 𝒎𝑒−𝑡 d𝑡 + 𝑑𝜼(𝑡)

• In this regime, the trajectories following this equation will 
generate a Gaussian ±𝒎, independent of the training set, meaning 
that the backward dynamics generalises
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Regime II I  and collapse

• In Regimes I and II, 𝑃𝑡
𝑒(𝒙) ≈ 𝑃𝑡

true(𝒙) = ׬ d𝒂𝑃0 𝒂 𝛾𝑡 𝒙, 𝒂

• This is no longer true in Regime III where the dynamics get attracted by one of the training point
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Regime II I  and collapse

• In Regimes I and II, 𝑃𝑡
𝑒(𝒙) ≈ 𝑃𝑡

true(𝒙) = ׬ d𝒂𝑃0 𝒂 𝛾𝑡 𝒙, 𝒂

• This is no longer true in Regime III where the dynamics get attracted by one of the training point

• Consider a noisy sample 𝒙 obtained from 𝒂1. The empirical probability is hence

𝑃𝑡
𝑒 𝒙 ∝ 𝑒− 1

2
𝒙−𝒂1𝑒−𝑡 2

2Δ𝑡 + ෍
𝜇=2

𝑛

𝑒𝐸eff
𝜇 (𝒙)

• The energy levels being independent, the second term is an instance of the Random Energy Model, well-studied in 
statistical physics of spin-glasses and concentrates for large 𝒏, 𝒅 [Derrida+1981, Lucibello+2024]

• The goal is to know if the first or the second term dominates, respectively leading to collapse or generalisation

𝐸eff
𝜇 𝒙 = −

1
2

𝒙 − 𝒂𝜇𝑒−𝑡 2

2Δ𝑡
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Regime II I  and collapse

• In Regimes I and II, 𝑃𝑡
𝑒(𝒙) ≈ 𝑃𝑡

true(𝒙) = ׬ d𝒂𝑃0 𝒂 𝛾𝑡 𝒙, 𝒂

• This is no longer true in Regime III where the dynamics get attracted by one of the training point

• Consider a noisy sample 𝒙 obtained from 𝒂1. The empirical probability is hence

𝑃𝑡
𝑒 𝒙 ∝ 𝑒− 1

2
𝒙−𝒂1𝑒−𝑡 2

2Δ𝑡 + ෍
𝜇=2

𝑛

𝑒𝐸eff
𝜇 (𝒙)

• The energy levels being independent, the second term is an instance of the Random Energy Model, well-studied in 
statistical physics of spin-glasses and concentrates for large 𝒏, 𝒅 [Derrida+1981, Lucibello+2024]

• The goal is to know if the first or the second term dominates, respectively leading to collapse or generalisation

Using a large-deviation analysis, we find that the timescale controlling this transition is the collapse time 𝑡𝐶 , defined 
as

Curse of dimensionality: one requires a training set of size 𝑛 ∼ 𝑒𝑑 examples to avoid collapse!

𝐸eff
𝜇 𝒙 = −

1
2

𝒙 − 𝒂𝜇𝑒−𝑡 2

2Δ𝑡

𝑡𝐶 =
1
2

log 1 +
1

𝑛2/𝑑 − 1
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From the time-reversal symmetry, speciation occurs when Λ𝑒−2𝑡 ≈ Δ𝑡, where Λ is the largest eigenvalue of the 
covariance matrix, meaning

𝑡𝑆 =
1
2

log Λ .

S P E C I AT I O N
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From the time-reversal symmetry, speciation occurs when Λ𝑒−2𝑡 ≈ Δ𝑡, where Λ is the largest eigenvalue of the 
covariance matrix, meaning

𝑡𝑆 =
1
2

log Λ .

S P E C I AT I O N

C O L L A P S E
• Collapse is due to the empirical approximation of the probability 

distribution → Need to know when 𝑃𝑡
𝑒 𝒙 ≈ 𝑃𝑡(𝒙)
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covariance matrix, meaning

𝑡𝑆 =
1
2

log Λ .

S P E C I AT I O N

C O L L A P S E
• Collapse is due to the empirical approximation of the probability 

distribution → Need to know when 𝑃𝑡
𝑒 𝒙 ≈ 𝑃𝑡(𝒙)

𝑡

ℳ𝑒 ≈ ℳ

𝑡 > 𝑡𝐶𝑡 < 𝑡𝐶



25Generalisation of  these results

From the time-reversal symmetry, speciation occurs when Λ𝑒−2𝑡 ≈ Δ𝑡, where Λ is the largest eigenvalue of the 
covariance matrix, meaning

𝑡𝑆 =
1
2

log Λ .

S P E C I AT I O N

C O L L A P S E
• Collapse is due to the empirical approximation of the probability 

distribution → Need to know when 𝑃𝑡
𝑒 𝒙 ≈ 𝑃𝑡(𝒙)

• This suggests a volume (or equivalently, entropy) argument where the 
collapse time is controlled by the excess entropy

𝑓 𝑡 = 𝑆Gauss 𝑡 − 𝑆 𝑡 ,

where 𝑆 𝑡 = − 1
𝑑 ׬ d𝒙𝑃𝑡 𝒙 log 𝑃𝑡(𝒙) is the Shannon entropy.

𝑡

ℳ𝑒 ≈ ℳ

𝑡 > 𝑡𝐶𝑡 < 𝑡𝐶
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Learning the score

• We trained a Denoising Diffusion Probabilistic model (DDPM) [Ho+2020]

• The denoiser has a U-Net architecture [Ronneberger+2015] and approximates the score 𝐹(𝒙, 𝑡)

• Time is embedded through sinusoidal position embedding and added to the features of all maps

• Attention [Vaswani+2017] is applied to resolution levels two and three, resulting in a total of 25.7M parameters 

32
x3

2x
3

Conv 3x3, GeLU
Downsampling
Upsampling
Copy and concatenate

Bottleneck
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Realistic  image datasets

ImageNet-16
• 𝑛 = 2000
• L. pandas and seashores
• 𝑑 = 16 × 16 × 3 = 768

CIFAR
• 𝑛 = 3000
• Classes horses and cars
• 𝑁 = 32 × 32 × 3 = 3072

LSUN64
• 𝑛 = 40000
• Conference and churches
• 𝑑 = 64 × 64 × 3 = 12288

MNIST32
• 𝑛 =10000
• Classes 1 and 8
• 𝑑 = 32 × 32 × 1 = 1024

ImageNet-32
• 𝑛 = 2000
• L. pandas and seashores
• 𝑑 = 32 × 32 × 3 = 3072

• All the models are trained for 
350k steps

• Fixed learning rate of 10−4 and 
ADAM optimizer

• Linear scheduler for the variance 
as in [Ho+2020]

• Batch size of 128 except for LSUN 
with 64
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Cloning experiment

• Characterize the time at which the barrier do not allow to switch between 
the two classes

• Cloning experiment: Sample a trajectory backward in time and then clone it 
for 𝜏 < 𝑡 to make two trajectories evolve with independent noise

• Measure the probability 𝜙 𝑡  that the two clones end up in the same class

H O W  T O  A N A LY Z E  S P E C I AT I O N  N U M E R I C A L LY ?

𝑇
time

𝑡𝑡 − 10

𝒙𝑎

𝒙𝑏

Are they in 
the same 

class?
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Cloning experiment
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Speciation transition (Regimes I - I I)

• 𝜙(𝑡) is computed using a ResNet-18 pre-trained on ImageNet 
and re-trained on each dataset

• The cloning time 𝑡 is rescaled by the prediction

 𝑡𝑆 = 1
2

log Λ

• Validates the speciation phenomenon in realistic datasets and 
on a timescale in agreement (max 15% error) with the 
theoretical prediction

• See also the U-turn experiment from [Behjoo+2023]

C L O N I N G  E X P E R I M E N T  O N  R E A L I S T I C  D A TA S E T S
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Collapse transition (Regimes I I - I I I )

H O W  T O  A N A LY Z E  C O L L A P S E  N U M E R I C A L LY ?

1. Cloning experiment but computing 𝜙𝐶 𝑡 , the probability that the two trajectories have the same nearest 
neighbour at the end of the backward time

𝑓𝑒 𝑡 =
log 𝑛

𝑑
+

1
2

+
1
2

log 2𝜋Δ𝑡 +
1
𝑑

න d𝑥𝑃𝑡
𝑒 𝑥 log 𝑃𝑡

𝑒(𝑥)

𝑆Gauss(𝑡) −𝑆(𝑡)
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Collapse transition (Regimes I I - I I I )

H O W  T O  A N A LY Z E  C O L L A P S E  N U M E R I C A L LY ?

𝑓𝑒 𝑡 =
log 𝑛

𝑑
+

1
2

+
1
2

log 2𝜋Δ𝑡 +
1
𝑑

න d𝑥𝑃𝑡
𝑒 𝑥 log 𝑃𝑡

𝑒(𝑥)

𝑆Gauss(𝑡) −𝑆(𝑡)

𝜇⋆( ෤𝑥) = argmin𝒂𝜇∈𝑿 𝒂𝜇𝑒−𝑡 − ෥𝒙 2
2

𝒂𝜇: training image
෥𝒙: generated image

2.    Time of last-changing index 𝜇⋆(𝑡) of closest neighbour in the training set

Beginning 
of backward

End of 
backward
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Collapse transition (Regimes I I - I I I )

• The two estimates agree quite well on realistic datasets

𝑓𝑒 𝑡 =
log 𝑛

𝑑
+

1
2

+
1
2

log 2𝜋Δ𝑡 +
1
𝑑

න d𝑥𝑃𝑡
𝑒 𝑥 log 𝑃𝑡

𝑒(𝑥)

𝑆Gauss(𝑡) −𝑆(𝑡)



35
ConclusionTheoretical results Numerical experimentsContext

Collapse transition (Regimes I I - I I I )

• The two estimates agree quite well on realistic datasets

• They are also consistent with the time where 𝑓𝑒(𝑡)/𝛼 
cancels for all datasets, as predicted by the theory

• Validates the collapse phenomenon in realistic datasets and 
on a timescale in agreement with the theoretical prediction

𝑓𝑒 𝑡 =
log 𝑛

𝑑
+

1
2

+
1
2

log 2𝜋Δ𝑡 +
1
𝑑

න d𝑥𝑃𝑡
𝑒 𝑥 log 𝑃𝑡

𝑒(𝑥)

𝑆Gauss(𝑡) −𝑆(𝑡)
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Wrapping-up and perspectives

• Three dynamical regimes in the backward dynamics:
 I. Random motion
 II. Features formation
 III. Memorization
• Transition I-II was called speciation and characterised by 

the largest eigenvalue of the data covariance.
• Transition II-III was called collapse and characterised by 

the excess entropy of the distribution.

S U M M A R Y
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• Transition II-III was called collapse and characterised by 

the excess entropy of the distribution.

S U M M A R Y

• Can we use the first ‘noise’ phase to accelerate sampling?

• How is memorization avoided in practice?

1. What is the role of regularization and number of data? 

2. What is the role of structure in the data? Can it be 

studied analytically?

P E R S P E C T I V E S
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THANKS FOR 
YOUR 

ATTENTION!
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