About
Experience
Publications
Talks
Contact
Posts
Light
Dark
Automatic
2
Cosmology with cosmic web environments I. Real-space power spectra
This work aims at extracting the cosmological information content of the several cosmic web environments. While we know that the matter power spectrum is not containing all the information about hte underlying cosmological model, we can wonder wether the environments are enclosing different types of information that one can use to break some of the degeneracies among parameters of the model. In particular, we show that a simple two-point correlator becomes sensitive to higher-order features when we have a look at the environments instead of the full matter distribution.
Tony Bonnaire
,
Nabila Aghanim
,
Joseph Kuruvilla
,
Aurélien Decelle
PDF
Cite
Regularization of Mixture Models for Robust Principal Graph Learning
The extraction of patterns from spatially structured point-cloud datasets is ubiquitous in many fields of science. In this work, we address the case of extracting one-dimensional structure from such data by formulating the problems in terms of a regularised version of a mixture model.
Tony Bonnaire
,
Aurélien Decelle
,
Nabila Aghanim
PDF
Cite
Shape and connectivity of groups and clusters: Effect of the dynamical state and accretion history
The way clusters are embedded in the cosmic web is linked with their intrinsic structure and dynamics. In this study, we carry an analysis of the links between the connectivity, the number of filaments a cluster is connected to, and their shape and dynamics (ellipticity, accretion rate etc.). In particular, we report a correlation between the connectivity and the assembly history of clusters with young and perturbed clusters being more connected than the old and relaxed ones.
Céline Gouin
,
Tony Bonnaire
,
Nabila Aghanim
PDF
Cite
Cascade of Phase Transitions for Multi-Scale Clustering
The task of clustering point-cloud data is nowadays believed to be either easy to carry or uninformative because the lack of knowledge (number of clusters, sizes, etc.) on the underlying pattern. This work proposes to use a statistical physics formulation of the clustering performed by means of a Gaussian Mixture Model to alleviate some of the drawbacks of the clustering task. In particular, it shows that we can explore the dataset to obtain several key information on the number of clusters, their size and how they are embedded in space, even in high dimensions.
Tony Bonnaire
,
Aurélien Decelle
,
Nabila Aghanim
PDF
Cite
T-ReX: a graph-based filament detection method
How to extract filaments based on a sparse and discrete spatial distribution of matter tracers? This paper proposes an algorithm for doing so by relying on a regularised graph to obtain a smooth one-dimensional structure representing the filamentary pattern of the cosmic web.
Tony Bonnaire
,
Nabila Aghanim
,
Aurélien Decelle
,
Marian Douspis
PDF
Cite
Cite
×